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Abstract Snow albedo is a dominant control on snowmelt in many parts of the world. An empirical
albedo decay equation, developed over 60 years ago, is still used in snowmelt models. Several empirical
snow albedo models developed since show wide spread in results. Remotely sensed snow albedos have been
used in a few studies, but validations are scarce because of the difficulty in making accurate in situ
measurements. Reconstruction of snow water equivalent (SWE), where the snowpack is built in reverse, is
especially sensitive to albedo. We present two new contributions: (1) an updated albedo model where grain
size and light absorbing particle content are solved for simultaneously and (2) multiyear comparisons of
remotely sensed and in situ albedo measurements from three high‐altitude sites in the western United
States. Our remotely sensed albedos show 4 to 6% RMSE and negligible bias. In comparison, empirical
albedo decay models, which require extensive in situ measurements, show RMSE values of 7 to 17% with
biases of−6 to−14%.We examine the sensitivity of SWE reconstructions to albedo error at two sites. With no
simulated error in albedo, reconstructed SWE had MAE values of 7 to 13% and 5–6% bias. The accuracy
actually improved with some simulated added error, likely because of a fundamental bias in the
reconstruction approach. Conversely, the best age‐based decay model showed an 18–20% MAE and bias in
reconstructed SWE. We conclude that remotely sensed albedos where available are superior to age‐based
approaches in all aspects except simplicity.

1. Introduction

Even modern snow models (e.g., Anderson, 1976; Guan et al., 2013; Hedrick et al., 2018; Lehning et al.,
2002) still use age‐based albedo decay equations to estimate snow albedo. This approach can be traced
back to a publication over 60 years old (U.S. Army Corps of Engineers, 1956). Although simple to use,
these empirical models require precise knowledge of when the last snowfall ended and do not account
for topographic variability in the processes that change albedo, so they cannot be used in many parts
of the world, and they have been shown to have RMSE values of 7 to 17% (Bair et al., 2016, Bair,
Davis, et al., 2018). Because snow albedo changes spatially and temporally depending on local variability
in the energy balance (Molotch et al., 2004) and because albedo degradation caused by small, highly light‐
absorbing particles (LAP) occurs independently of local processes in the snowpack (Skiles et al., 2018), we
hypothesize that remotely sensed measurements of snow albedo, when and where available, are inher-
ently more accurate than models based on aging.

Since 1956, radiative transfer approaches have been used to estimate the spectral albedo of both clean and
dirty snow (reviewed by Warren, 1982). Advances in measurement of the absorption coefficients of ice
(Picard et al., 2016; Warren & Brandt, 2008), dust (Haywood et al., 2003), and black carbon (Bond &
Bergstrom, 2006) in the snowpack have led to more a more robust understanding of the spectral albedo of
snow (Dang et al., 2015; Flanner & Zender, 2005). In addition to airborne dust and soot, snow algae
(Painter et al., 2001), char left over from fires (Gleason & Nolin, 2016), and plant litter (Melloh et al.,
2002) reduce snow albedo, particularly in the visible wavelengths.

Because running a full radiative transfer model to estimate snow albedo over large regions is impractical,
statistical fits to the radiative transfer solutions have been used to estimate the broadband snow albedo α
(Dang et al., 2015; Dozier et al., 2009; Gardner & Sharp, 2010; Marshall & Warren, 1987) which we define as
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α ¼ ∫
x2
x1
αλSλdλ

∫
x2
x1
Sλdλ

(1)

αλ is the spectral albedo of snow; Sλ is the solar spectral irradiance at the
snow surface, both at wavelength λ; and x1 = 0.28 μm and x2 = 4.00 μm.

1.1. Effect of the Illumination Spectrum

The spectral albedo αλ depends only on the snow properties and not on
the illumination itself, but the broadband albedo is a convolution of the
spectral albedo and the spectrum of the incident radiation. The value of
αλ depends on optically equivalent grain radius r, optical properties and
concentration of LAP, and illumination angle, while the magnitude, spec-
tral distribution, and direct versus diffuse portions of Sλ depend on the
path length through the atmosphere and cloud and atmospheric proper-
ties. While the snow community universally recognizes that illumination
angle θ, r, and LAP affect α, the effects of the solar spectrum and atmo-
spheric model on α are often ignored. Even when using the same snow
reflectance model, significant differences in α result from using different
atmospheric models and parameters (Figure 1 and Table 1). Therefore,
any statistical fit to a snow albedo model is only useful if the atmospheric
conditions where the model is applied are similar to those for which the
model was developed. In Figure 1, we show α versus r for five models
using an absolute air mass of 1.5, equivalent to the insolation‐weighted
cosine of the sunlit portion of Earth (Cronin, 2014):

θ ¼ cos−1 2=3ð Þ ¼ 48:19° (2)

This value is conveniently close to the angle (49.50°) at which the direct and diffuse broadband snow albedos
intersect (Wiscombe & Warren, 1980).

1.2. Need for an Albedo Model

Remotely sensed observations from satellite or aerial platforms offer an ability to estimate snow albedo over
large regions, but at least with sensors such asMODIS or VIIRS on polar‐orbiting satellites, retrievals provide
at best a daily or twice daily snapshot. Multispectral sensors on geostationary satellites can image Earth at
1‐km spatial and 15‐min temporal resolution, but coverage is not global, and until the latest‐generation
sensors on GOES‐16/17, Himawari‐8/9, and Fengyun‐4 were launched, the spectral and radiometric charac-
teristics of the bands were inadequate for spectroscopic determination of the surface properties of snow.
Thus, snow albedo models are still needed for simulations and to interpolate between measurement periods.

Because snow is so bright in the visible wavelengths, a small relative change in its albedo leads to a much
larger relative change in its absorption, 1 − α, also known as co‐albedo. For example, a 5% decrease in α,
say from 85% to 80%, represents about a 6% relative decrease (5%/85%). However, the relative change in
absorption is 33% (5%/15%). These increases in absorption significantly affect the melt rate of the snowpack.

Reconstruction of snow water equivalent (SWE), a technique where the snowpack is built up in reverse from
melt‐out to peak (Martinec & Rango, 1981), is particularly sensitive to albedo because the snowpack is built
backward during the ablation phase, which is controlled by net radiation R in many parts of the world
(Marks & Dozier, 1992; Mazurkiewicz et al., 2008; Oerlemans, 2000). The amount of downwelling shortwave
radiation S↓ absorbed by the snowpack is a large part of net radiation R. For a ripe snowpack, this energy
balance can be expressed as

Mp ¼ Rþ H þ L (3)

Mp is the potential energy available for melt, H is the sensible heat flux, and L is the latent heat flux. The
latent and sensible terms tend to cancel each other (Marks & Dozier, 1992) so we are left with net radiation
R controlling melt, which is expressed as

Figure 1. Broadband snow albedo α versus effective optical grain radius r
for five combinations of models and parameters. Curves shown are for
clean snow and clear‐sky conditions with an air mass of 1.5. Additional
information about the model runs is given in Table 1.
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R ¼ S↓ 1−αð Þ þ I↓ þ I↑ (4)

I↓ is incoming longwave radiation and I↑ is emitted longwave radiation. Incoming and outgoing longwave do
not cancel each other and are important terms in the energy balance during melt. Because most snow exists
near its melting point (273.15 K), its longwave losses are usually greater than downward emission from the
atmosphere; therefore, the magnitude of I↓ is usually smaller than that of I↑, which causes the snowpack to
lose energy in the absence of solar input (i.e., at night) and when H+L ≈ 0. Thus, in this simplified energy
balance example, one can see how absorbed solar radiation S↓(1 − α) is an important factor in
snowpack melt.

In addition to α, SWE reconstruction is also sensitive to the fractional snow‐covered area fSCA, as potential
melt is distributed spatially as

M ¼ f SCA×Mp (5)

M is an estimate of the snow or ice melt across a pixel. Although there are improvements to be made in
remote sensing of fSCA, considerable effort has gone into this problem, with demonstrated success. For exam-
ple, theMODIS SnowCovered Area and Grain Size (MODSCAG)model (Painter et al., 2009), which we have
used for fSCA in our reconstructed SWE (Bair et al., 2016; Rittger et al., 2016), shows an RMSE of 0.09 and an
F‐score (combining precision and recall) of 0.95 (Rittger et al., 2013).

2. Remotely Sensed Albedo Measurements
2.1. Fractional Snow‐Covered Area and Snow Properties

For our remotely sensed α estimates, we start with the MODSCAG grain size (Painter et al., 2009), an esti-
mate of r using spectral unmixing. Using a library of end‐members for clean snow reflectance, soil/rock,
vegetation, and photometric shade, the MODSCAG algorithm uses a least squares fit to the MODIS BRDF
retrievals from the MOD09GA surface reflectance product. Pixels are assumed to contain linear mixtures
of the end‐members. The MODSCAG solutions contain fractional estimates of each of the end‐members
and r.

MODSCAG has been shown to produce accurate fSCA estimates (Rittger et al., 2013), but its r validation has
been limited. Using only 12 manual measurements with a hand lens as validation, Painter et al. (2009) show
an RMSE of 64 μm and a bias of 30 μm.

For estimates of the LAP content and its effect on α, we use MODDRFS, the MODIS Dust and Radiative
Forcing on Snow algorithm (Painter et al., 2012). Specifically, we use ΔVIS, the degradation of visible albedo
by dust:

ΔVIS ¼ αvis;clean−αvis;dirty (6)

αvis,clean and αvis,dirty are the clean and dirty snow albedos in the visible part of the solar spectrum. Validation
of the MODDRFS product has been limited. After bias correction, Painter et al. (2012) report an RMSE of 33
W/m2 for the radiative forcing product (ΔVIS × S↓), which translates to about a 6.4% RMSE in the visible
albedo, validated with six years (2005–2011) of measurements at two study plots in the San Juan

Table 1
Snow Reflectance Model, Atmospheric Model, Atmospheric Profile, and Surface Altitude for the Five Broadband Albedo Curves Shown in Figure 1

Label in Figure 1 Snow reflectance model Atmospheric model Atmospheric profile Surface altitude (km)

a Wiscombe and Warren (1980) SBDART Midlatitude winter 3
b Wiscombe and Warren (1980) SBDART Subarctic summer 0
c Wiscombe and Warren (1980) SMARTS Midlatitude winter 3
d Gardner and Sharp (2010) SBDART Subarctic summer 0
e Dang et al. (2015) SBDART Subarctic summer 0

For the atmospheric model, SBDART is the Santa Barbara DISORT Atmospheric Radiative Transfer model (Ricchiazzi et al., 1998) and SMARTS is the Simple
Model for Atmospheric Radiative Transfer (Gueymard, 2001, 2005).

10.1029/2019WR024810Water Resources Research

BAIR ET AL. 7828



Mountains of Colorado. Their analysis used images with MODIS sensor zenith angles within 30° of nadir,
which leads to less skew and other viewing geometry problems (Tan et al., 2006; Xiaoxiong et al., 2005).
Our previous work (Bair et al., 2016, Bair, Calfa, et al., 2018; Rittger et al., 2016) used these products for
SWE reconstructions.

2.2. Filtering, Interpolation, and Smoothing of Remotely Sensed Albedo

MODIS is a push‐broom scanner instrument with a 2,300‐km swath, so the sensor view zenith angle changes
day‐to‐day for a given pixel, causing substantial skew and geolocational errors of up to one pixel (463 m)
when the swath data are projected onto the sinusoidal grid (Tan et al., 2006; Xiaoxiong et al., 2005).
Moreover, the pixel size (the ground instantaneous field of view) increases by a factor of 10 from nadir to
the edge of the swath (Dozier et al., 2008). In addition, the reflective and thermal infrared bands on
MODIS do not see through clouds, so the clouds must be identified and masked.

We filter, interpolate, and smooth the grain size and ΔVIS retrievals simultaneously with fSCA processing
(Dozier et al., 2008). The raw MODSCAG/MODDRFS retrievals are assembled into time‐space cubes.
Pixels with gaps due to clouds, striping, and other errors are flagged. A persistence filter is applied to each
pixel such that snowmust be identified at a minimum number of days (e.g., 15 days) over a given time period
(e.g., 90 days); otherwise, that pixel is set to fSCA = 0 and all snow cover properties are set to null for those
days. This persistence filter helps eliminate false positive snow identifications, which are caused by clouds
and other bright surfaces. These constitute the filtered images. The flagged pixels in the filtered images are
then interpolated using a weighted spline temporal interpolation, with the inverse of the sensor zenith angle
for the weights (Dozier et al., 2008). We refer to these images as interpolated. The last step is a three‐
dimensional (x, y, time) Gaussian smoothing for additional noise reduction, which mainly results from
the day‐to‐day differences in the location and size of pixels caused by variation in the MODIS view angle.
We refer to these images as smoothed.

3. In Situ Albedo Measurements
3.1. Study Sites

The sites (Figure 2) used were the Cold Regions Research and Engineering Laboratory and University of
California Santa Barbara Energy site (CUES) on Mammoth Mountain, CA, USA (Bair et al., 2015; Bair,
Davis, et al., 2018), and the Swamp Angel Study Plot (SASP) and Senator Beck Study Plot (SBSP) in the
Senator Beck Basin, CO, USA (Landry et al., 2014; Skiles, 2019). These high‐altitude energy balance sites
were selected for their long records of high‐quality energy balance measurements, in particular terrain‐
corrected snow albedo (section 3.2), partitioning of the illumination and albedo into broadband and near‐
infrared components, and separating diffuse from direct irradiance. The combination of broadband and
near‐infrared albedo enables separation of the effects of grain size and LAP on snow albedo.

The CUES and SASP sites are comparable in that both are subalpine, but CUES is located in a predominately
maritime snow climate, with some years showing intermountain character (Bair, 2013), while SASP is
located in a predominately continental snow climate (Landry et al., 2014). Of note is that the high elevation
at CUES (2,940 m), compared to other maritime sites, makes midwinter rain infrequent. The SBSP alpine
site is at high altitude (3,714 m), which makes it excellent for studying the snowpack energy balance but also
makes access difficult so fewer snowpit measurements (i.e., SWE for the purposes of this paper) are
available there.

For this study, vegetation neighboring the CUES instruments can shadow the snow beneath the downlook-
ing radiometers, so the data must be cleaned to eliminate incorrect values (Bair, Davis, et al., 2018). At SASP
the canopy is considerably more open, and SBSP is devoid of trees, so shadows are less of a problem at these
sites, but the albedo measurements show other artifacts caused by, for example, nonsnow objects in the
radiometers' field of view. However, the MODIS Terra overpass occurs at about 10:30 am, which is close
to solar noon and when our albedo inversions (section 3.4) are done, so problems with shadows
are minimized.
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3.2. Snow Surface Corrections

At all three sites, the snow surface is neither level nor flat, meaning that illumination angles at the snow sur-
face are different than those at the uplooking radiometers that measure incoming solar radiation. To correct
for this problem, a plane is fit to the snow, and its local solar zenith angle ? is calculated, which can then be
used to estimate a correction factor c to match the illumination conditions of the snow surface (Bair et al.,
2015; Bair, Davis, et al., 2018; Painter et al., 2012):

c ¼ cosθ
cosθ0

(7)

θ is the local solar zenith angle and θ0 is the solar zenith angle for a level surface. Then the correction factor
is applied to the downwelling direct radiation B↓, while the downwelling diffuse radiationD↓ is not corrected
because it does not depend on illumination:

α ¼ D↑

cB↓ þ D↓
: (8)

D↑ is the reflected radiation from the snow surface measured by a downlooking radiometer. At CUES, B↓ and
D↓ are measured automatically by a Delta‐T SPN1 Sunshine Pyranometer (Bair, Davis, et al., 2018), while at
SASP and SBSP, diffuse and direct radiation are partitioned by applying potential irradiance values from
SBDART to the measured broadband global irradiance. The snow surface correction for the near‐IR albedos
does not include the diffuse irradiance term, as there is little atmospheric scattering in the near‐IR:

αnir ¼ D↑;nir

cS↓;nir
(9)

αnir is the near‐IR albedo and S↓,nir and D↑,nir are the incoming and reflected near‐IR irradiances.

At CUES, hourly scans from a terrestrial laser scanner are used to map the snow surface, while at SASP and
SBSP, manual snow depth measurements are recorded at multiple stakes with known locations. Both tech-
niques are used to fit planes to the snow surface, from which the local ? is computed. While both approaches
have pitfalls, we expect the snow surface correction at CUES to be more precise because measurements of
the snow surface are taken every hour, whereas at SASP and SBSP, the manual measurements are taken
less frequently.

Figure 2. Map of CUES and SASP/SBSP. MODIS imagery courtesy of NASA Worldview.
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Additional measurements at more sites would be useful for validating our approach. However, for example
the data from Col de Porte in the French Alps (Lejeune et al., 2019) explicitly do not include the terrain cor-
rection, and the data set assembled to test snowmodels (Ménard et al., 2019) apparently does not implement
this procedure needed to prevent artifacts in albedo measurements.

3.3. Model for the Spectral and Broadband Snow Albedo

The snow properties themselves and the illumination angle control the spectral albedo of snow, αλ in equa-
tion (1), for direct and diffuse irradiance. The broadband snow albedo, however, depends on the spectral dis-
tribution of the irradiance and the partitioning between its direct and diffuse components. Therefore, the
broadband albedo depends on the spectral albedo and on the choice of the solar spectrum and atmospheric
radiative transfer model used to estimate Sλ in equation (1).

We usually use the Simple Model for Atmospheric Radiative Transfer (SMARTS; Gueymard, 2001, 2005) to
model the incoming direct and diffuse solar spectral irradiances. To approximate conditions in the snow‐
covered mountains of the western United States, among the myriad of model parameters, we used a midla-
titude winter atmospheric profile, 3‐km surface elevation, coarse‐grained snow surface, and rural aerosol
model (Shettle & Fenn, 1979). For comparison, we ran the same analysis with a subarctic summer atmo-
spheric profile at sea level. As Figure 1 shows, the atmospheric model and parameter choices substantially
affect the broadband albedo; therefore, we chose parameters to best simulate the domain which we
are studying.

For the snow reflectance, we compute the Mie (1908) scattering parameters usually with the complex
angular momentum approximation. Nussenzveig and Wiscombe (1991) point out that the complex angular
momentum approximation is valid for situations with a dimensionless Mie size parameter β = 2πr/λ > 10,
where radius r and wavelength λ have the same units. The approximation is accurate enough and much
faster than other Mie calculation methods, and it implicitly averages over size; hence, the complex angular
momentum method is appropriate for all snow grain sizes. We resort to MatScat (Schäfer et al., 2012), a
MATLAB adaptation of the Bohren and Huffman (1998) FORTRAN code, only for calculations about dust
or soot particles in the snowpack. Values of the complex refractive index of ice are from Warren and
Brandt (2008) with some visible and UV corrections from Picard et al. (2016). If the snow is dirty, Mie
parameters for the dust or soot are averaged with those of the snow, with dust optical properties from
Skiles et al. (2017) and Flanner et al. (2007). The single scattering albedo and asymmetry factor estimated
from the Mie equations are then fed into a two stream radiative transfer model, and the delta‐Eddington
approximation (Joseph et al., 1976; Wiscombe & Warren, 1980) is used to solve for the spectral reflectance
of snow. Once the spectral reflectance of the snow has been estimated, the broadband albedo is estimated
using equation (1). Estimating the effect of other likely contaminants such as snow algae or forest litter
requires a slightly different approach, because the optical properties of the absorbing materials are not
calculated with Mie theory. Instead, the snow grain size can be recovered from reflectance in wavelengths
beyond the visible spectrum (Dozier, 1989; Nolin & Dozier, 1993). Then reflectance values in the
visible wavelengths indicate the degree to which forest litter (Melloh et al., 2001) or algae (Painter
et al., 2001) degrade the albedo. Empirically, that degradation has been related to concentration of the
contaminating materials.

Running the radiative transfer equations over an extended terrain, as would be required for large‐scale
remote sensing work, is impractical. Thus, we have developed statistical fits for the curves shown in
Figure 1. Following the methodology of Gardner and Sharp (2010), for a given solar zenith angle we fit
the albedo versus grain size relationship for clean snow with a three‐parameter power law:

αr ¼ arb þ d (10)

The coefficients a,b,and d depend on the solar zenith angle. The relationship follows a rational equation,
whereby μ0 = cosθ0 and a,b,and d each follow a rational equation:

10.1029/2019WR024810Water Resources Research

BAIR ET AL. 7831



a; b; df g ¼ p1μ
2
0 þ p2μ0 þ p3

q1μ20 þ q2μ0 þ q3
(11)

Solving for the values depends on the starting guesses, because a least squares or maximum likelihood esti-
mate identifies a local minimum. Therefore, we run the fitting equations 100 times each with random start-
ing values and select only those where the R2 value exceeds 0.999. Then if the maximum R2 value coincides
with the minimum RMSE, we select those coefficients. Otherwise, or if max(R2) < 0.999, we consider the
combinations where R2 values are above the 95th percentile and RMSE values are less than the 5th percen-
tile, we sort the R2 in descending order and the RMSE in ascending order, and we choose the combination
with the minimum sum of ranks.

In matrix form, we can express this relationship as

a

b

d

2
64

3
75 ¼ P×

μ20
μ0
1

2
64

3
75

8><
>:

9>=
>;
⊘ Q×

μ20
μ0
1

2
64

3
75

8><
>:

9>=
>;

(12)

The symbol ⊘ denotes Hadamard (element‐by‐element) division. Table 2 shows example values for the P
and Qmatrices, for the atmospheric parameters in the SMARTS model for a midlatitude winter atmosphere
at 3‐km elevation and for a Subarctic summer atmosphere at sea level.

In normal applications, we would apply these equations over a satellite image and coincident topography,
which provide estimates of r and μ0 at every grid cell, expressed as matrices R andΜ0. Similarly, the values
of a, b, and d in equation (10) can be converted to matrices:

A ¼ P 1; 1ð Þ×M2
0 þ P 1; 2ð Þ×M0 þ P 1; 3ð Þ� �

⊘ M2
0 þ Q 1; 2ð Þ×M0 þQ 1; 3ð Þ� �

(13)

B ¼ P 2; 1ð Þ×M2
0 þ P 2; 2ð Þ×M0 þ P 2; 3ð Þ� �

⊘ M2
0 þ Q 2; 2ð Þ×M0 þQ 2; 3ð Þ� �

(14)

D ¼ P 3; 1ð Þ×M2
0 þ P 3; 2ð Þ×M0 þ P 3; 3ð Þ� �

⊘ M0 þQ 3; 3ð Þ½ � (15)

α ¼ A⊗RB þ D (16)

The symbols⊗ and⊘ denote Hadamard multiplication and division, and the exponents inM2
0 and RB infer

raising to the power element‐by‐element. If the computing language employed enables vector and matrix
operations directly, without loops, equations (13)–(16) calculate the clean snow albedo at every grid cell.
In MATLAB for example, computing the albedo over a grid needs only those four equations converted to
four lines of code.

Figure 3 shows a surface plot of the functional relationship α = f(r, cosθ0) for the midlatitude winter atmo-
sphere at 3‐km elevation. Compared to the modeled reflectance, the statistical fit for values in the range
0.07 ≤ μ0 ≤ 1, that is, θ0 < 86°, is almost exact, with values of R2 > 0.9999, RMSE = 2.11 × 10−4, and a bias

Table 2
Values of the P and QMatrices in Equation (12) to Seven Significant Digits, for the SMARTS Model With a Midlatitude Winter Atmosphere at 3‐km Elevation and a
Subarctic Summer Atmosphere at Sea Level

Midlatitude winter atmosphere at 3‐km elevation

P ¼
−9:025001 −6:853901 −6:360441

0:05785986 0:273218 0:1890732

0:07632736 1:017243 0:4149719

2
64

3
75 Q ¼

1 92:35081 27:87415

1 1:28665 1:53981

0 1 0:3373872

2
64

3
75

Subarctic summer atmosphere at sea level

P ¼
−0:6458545 −0:1641362 −0:4793498

0:1143997 0:05545726 0:1315713

0:06805254 0:991294 0:5284415

2
64

3
75 Q ¼

1 5:093014 2:773746

1 0:0001412588 0:9561747

0 1 0:446777

2
64

3
75
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of 6.6 × 10−5. For the Subarctic Summer, the corresponding values are
R2 > 0.9999, RMSE = 1.96 × 10−4, bias 1.29 × 10−4. At solar positions so
close to the horizon, the atmospheric models are less accurate. They must
incorporate refraction, and the diffuse irradiance is much greater than the
direct over much of the spectrum at those angles. Therefore, for solar
zenith angles greater than 85°, we recommend using the a, b, and d values
at μ0 = 0.09.

We are working on adding clouds and impurities to our statistical albedo
model, using an approach similar to Gardner and Sharp (2010), but they
are not required for this study for two reasons: (1) since MODIS is an
optical instrument that cannot see through clouds, we can only validate
albedo measurements on clear days and (2) we currently use a separate
step for estimating the broadband albedo degradation due to LAP
(section 3.4). For the most exact albedo estimates for our SWE recon-
structions, clouds must be accounted for; however under cloudy skies,
longwave radiation dominates the energy balance, so we do not expect
the inclusion of clouds in the albedo model to substantially affect
the results.

For a slower but more flexible approach, in the Appendix we have
included a lookup table function and associated data. As input, the func-
tion takes the parameters shown in Figure 3 (solar zenith and snow
radius), but adds local illumination angle, elevation, and concentration
of dust or soot.

3.4. Estimates of Grain Size and LAP Concentration

The approach above can used iteratively (Coleman & Li, 1996; Móre, 1977) to solve for the grain size and
impurity concentration, given observed α and αnir. These two broadband albedos are required because grain
size affects albedo mostly in the near‐IR, while LAP affect the visible part of the spectrum. To interpret the
albedos observed at the CUES site, the spectral range of the radiometers is used (provided in Bair, Davis,
et al., 2018) along with θ0 in the SMARTSmodel to obtain the incoming spectral direct and diffuse solar irra-
diance. The size and concentration of the LAP together affect the spectral albedo, with smaller particles
being more effective. However, one can almost perfectly mimic the spectra with different pairs of values.
Therefore, we simply assume a typical size value for dust (3 μm) and solve for concentration. While this
assumption does not yield the actual LAP concentration, it does provide the right spectral albedo. Once a
solution is reached, the model is currently set up to produce an estimate of the LAP concentration by mass
fraction rather than ΔVIS. To obtain ΔVIS, estimates of the clean and dirty snow albedos over the visible
range are made and applied to equation (6).

Sometimes however, the solved‐for grain sizes are unrealistically large, and several plausible explanations
exist. For example, the snowpack could be wet or refrozen on the surface. Wet snow forms clusters of grains
(Colbeck, 1979), which behave optically as large grains. In laboratory measurements of reflectance, O'Brien
and Munis (1975) observed that near‐IR reflectance decreased as the snow melted, but the values did not
rebound when the snow refroze. These interpretations of large grain sizes could also be caused by dark
objects, like trees, in the radiometers' field of view. Further, fitting a plane is a simplification of the snow sur-
face geometry, but necessary given that our radiative transfer model is not yet adapted to rough surfaces.
Several studies show that macroscopic roughness of the snowpack such as sun cups, sastrugi, and nieve peni-
tentes reduce the snow surface albedo (Lhermitte et al., 2014; Warren et al., 1998; Zhuravleva &
Kokhanovsky, 2011). Warren et al. (1998) suggest that these rough features reduce snow albedo for two rea-
sons: (1) decrease of effective zenith angle and (2) photon trapping. Especially at higher zenith angles, these
rough features reduce the effective zenith angle as they can cause more of the snow to be oriented toward the
sun. Photon trapping is an increase in the probability of absorption as the number of scattering events
increases in a rough versus smooth surface.

Figure 3. Broadband albedo of clean snow as a function of grain size (effec-
tive optical radius) and solar zenith angle, from equations (13)–(16), cover-
ing every combination of snow radii from 30 to 1,500 μm and solar zenith
angles from 0° to 86°.
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Because of different plausible causes of reduction in observed snow albedo, we set the r upper limit at 1,500
μm, a somewhat arbitrary value well above what has been measured using different techniques (Aoki et al.,
2007; Matzl & Schneebeli, 2006; Nolin & Dozier, 1993; Painter et al., 2007; Skiles & Painter, 2016). Values
above this limit were discarded. Our reasoning behind this high limit is that the MODSCAG/MODDRFS‐
derived albedos are likely to be impacted by some of the same artifacts as the in situ observations, which
could cause unrealistically large grain size estimates. Thus, by allowing these large grain sizes, we allow
for some of these albedo darkening mechanisms to be accounted for, but suggest that r values above 1,500
μm are not reliable. Additionally, there were 44 measurements (February through December 2007) at

Figure 4. (top row) Remotely sensed grain radius versus (bottom row) modeled value from in situ measurements of albedo and ΔVIS for (a and d) CUES, (b and e)
SASP, and (c and f) SBSP. The different colored markers represent the three different levels of filtering, interpolation, and smoothing (section 2.2).

Table 3
Summary of Error Statistics for Remotely Sensed Albedos

Site
Level of

processing N
N

omitted
RMSE, grain
radius (μm)

Bias, grain
radius (μm)

RMSE,
ΔVIS (%)

Bias,
ΔVIS,
(%)

CUES Smoothed 399 28 246 −104 3.0 0.5
Interpolated 209 −65 4.4 −1.5
Filtered 207 −65 9.6 8.1

SASP Smoothed 701 100 140 −19 6.9 −5
Interpolated 73 1 3.5 −1.6
Filtered 107 −5 5.7 −2.7

SBSP Smoothed 727 67 152 −31 4.4 −2.6
Interpolated 73 −6 2.9 −1.3
Filtered 118 −22 5.5 −3

Mean (total for N)
across all sites

Smoothed 1827 195 179 −51 4.8 −2.4
Interpolated 118 −23 3.6 −1.5
Filtered 133 −29 6.2 1.2

Level of processing: filtered, interpolated, and smoothed (see section 2.2).
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SASP and 45 at SBSP that had zeros values for the fSCA and r due to a
processing error at the NASA JPL server.

3.5. Age‐Based Albedo Decay Model

Because our hypothesis is that our remotely sensed albedos are more
accurate than age‐based albedo decay models, we applied the
Biosphere‐Atmosphere Transfer Scheme (BATS; Dickinson et al.,
1993), which was the most accurate of the age‐based models in a pre-
vious study (Bair et al., 2016) with an RMSE of 9% and a bias of −6%.
As with all age‐based decay models, BATS requires a precise estimate
of when the last snowfall ended. Such a value is not available in most
parts of the world, as in situ measurements are needed. Manual mea-
surements are preferable, for example to distinguish the end of a
storm from snow redistributed by wind, which cannot be discerned
using automated snow depth measurements. As the Mammoth
Mountain Ski Patrol takes manual snow depth and weight measure-
ments each day that it snows, a reasonably good estimate of when it
stopped snowing prior to the albedo measurement can be made at
CUES. Still, these manual weather measurements are only consis-
tently made once a day. Thus, even with these careful daily measure-
ments, there is still uncertainty in determining precisely when it
stopped snowing. As in our previous study, we used a 10‐mm thresh-
old for new snow to reset to the maximum broadband albedo value of

0.86. BATS also requires the local solar zenith angle θ and the snow surface temperature as inputs. The local
solar zenith was computed from the lidar snow surface scans (section 3.2). Snow surface temperature is now
measured at CUES but was not available over most of the study period, so we used the lesser of the measured
air temperature or 273.15 K as in our previous study (Bair et al., 2016).

4. Model Validation and Discussion
4.1. Remotely Sensed Values Versus Modeled From In Situ Albedo

Figure 4 shows remotely sensed versus in situ modeled grain radius and ΔVIS at CUES (Figures 4a and 4d),
SASP (Figures 4b and 4e), and SBSP (Figures 4c and 4f) for each of the filtering, interpolation, and smoothing
steps described in section 2.2.

Table 3 shows error statistics are for each of the three sites and mean values. Note that these errors represent
the best match to the in situ measurements from a 9‐pixel neighborhood centered on each of the sites. This
best‐of‐9‐pixel neighborhood approach is often used with MODIS measurements (Bair, Calfa, et al., 2018;
Rittger et al., 2016) because of geolocational uncertainty (section 2.2) and spatial variability of the
snow surface.

Figures 4d–4f clearly show that CUES is less dusty than SASP or SBSP with no ΔVIS values larger than 25%
and many in situ observations indicating a value of zero. Also, the relative errors of ΔVIS are larger than
those of grain size across all three sites. The interpolated product performs better than the filtered or
smoothed product for every site and for both variables, except for one case (CUES ΔVIS). Overall, there is
a slightly negative bias in grain size and ΔVIS, but themagnitude is small, averaging−34 μm in r and around
−1% for ΔVIS.

A useful way to put these errors in perspective is to examine their impact on α. Using a 500‐μm grain radius r
and cosθ= 2/3, the mean RMSE values of 118 to 179 μm across all three sites in grain sizes are comparable to
a 1.2 to 1.7% difference in α. The impact of the 3.6 to 6.2% mean RMSE in ΔVIS can be found by multiplying
ΔVIS by fVIS, the fraction of total irradiance in the visible spectrum. Based on our results from SMARTS, we
find fVIS ≈ 0.63, relatively insensitive to illumination conditions for clear skies. Note that this estimate is
slightly greater than our previous (e.g., Bair et al., 2016) and less accurate estimate of fVIS, which was 1/2.
Thus, the impact on the broadband albedo of the RMSE error inΔVIS is 2.3% to 3.9%. Together the combined
impact of the grain size and ΔVIS RMSE on broadband albedo is 3.5% to 5.6%, which is lower than the 7% to

Figure 5. Scatterplot of modeled versus measured albedo at CUES using remo-
tely sensed albedos and those from the BATS aged‐based model. N = 356 days
of albedo measurements are plotted.
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17% RMSE found in age‐based decay models. The mean bias in grain size (−23 to −51 μm) and −2.4 to 1.2%
are equivalent to about a ±1% bias at the most.

4.2. Comparison to the Age‐Based Model

For comparison, we use r and ΔVIS from the interpolated images which we found most accurate in
section 4.1 to produce α estimates for comparison with the age‐based BATS model. Figures 5 and 6a–6g and
Table 4 show that the RMSE for BATS is 2 times greater (4.8% versus 9.6%) and the bias is more than 4 times
greater in magnitude (1.3% versus −5.4%) than for our remotely sensed values. The remotely sensed albedos
show increasing error at the lower values of α at the end of the melt season (Figures 6a–6g), which corre-
spond to larger grain size values and/or increased contamination. The BATS α errors did not show a trend.
We find this to be clear evidence that even with the best available in situ measurements, the best age‐based
albedo model was considerably less accurate and more biased than our remotely sensed albedo estimates.

5. Sensitivity of Reconstructed SWE to a Bias in Albedo

To examine the sensitivity of reconstructed SWE to albedo, we ran our Parallel Energy Balance model
(ParBal; Bair et al., 2016) to reconstruct SWE at CUES and SASP using measured forcings from the suite
of radiometers and sensors for wind, temperature, and humidity (Bair, Davis, et al., 2018; Skiles, 2019).
We used the in situ measured albedo and melt out date, but also introduced two sources of error: random
error and biased error. For our error values, we used error results from the previous section, that is,
Table 4.

We did not use our remotely sensed albedo estimates or estimates from BATS directly. BATS could not be
applied at SASP because there was no record of when the last snowfall ended. And applying our remotely

sensed albedos would have required interpolation over cloudy days with
no way to account for geolocational uncertainty and spatial variability
of the snow surface across the MODIS pixel. Rather, we perturbed the in
situ measured albedo by the error in Table 4 for a tractable comparison
which could be used to examine the effect of any RMSE and bias values
in albedo on reconstructed SWE. For the random error, we assumed nor-
mally distributed error with amean of zero and a standard deviation of the
RMSE shown in Table 4. For the bias error, we added the bias error shown
in Table 4.

Figure 6. (a–g) Time series of albedo at CUES using measured, remotely sensed, and the BATS aged‐based albedos from the water years 2011 to 2017.

Table 4
Error Statistics for TwoMethods for Obtaining Broadband Albedo, Validated
Using In Situ Measurements at the CUES Site

Albedo method RMSE (%) Bias (%)

Remotely sensed 4.8 1.3
BATS 9.6 −5.4
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For comparison, we include the measured SWE at both sites. For CUES, we used estimated SWE values
directly in front of the platform without shade. We did not simply use the values measured from the snow
pillow because the pillow is located under shade from trees and gets additional wind‐deposited snow.
Thus, the pillow stores more SWE and melts out later than the open area by the radiometers. At first, to esti-
mate the SWE closer to the radiometers, we tried to directly estimate the density of the snow above the pillow
using the acoustic depth sensor and the pillow SWE, but the acoustically measured depths were too noisy
most of the time for reliable estimates. Instead we used a linear regression between the acoustic depth sensor
at the platform and the sensor directly above the pillow. Then, we adjusted the SWE using the slope coeffi-
cient, but converted the intercept from centimeter of depth to centimeter of SWE using the median snow
density measured above the pillow. Note the switch from RMSE to MAE for SWE, as we use RMSE to
examine errors for inputs into the ParBal, but MAE to examine errors in the reconstructed SWE (Bair,
Davis, et al., 2018). The reasoning is that we apply greater penalties for greater errors in the ParBal inputs
using RMSE, but not in the SWE output with MAE. Also note that CUES lacked a snow pillow from the late
1990s until WY 2013, so we start the reconstructions then.

Figure 7. (a–d) Reconstructed SWE at CUES for 2013–2017 using three different simulated error scenarios for snow albedo: no error, a remotely sensed noise and
bias error, and the BATS noise and bias error. Values for the remotely sensed noise and bias error are from Table 4.

Figure 8. (a–i) Reconstructed SWE at SASP for 2006–2014 using three different simulated error scenarios for snow albedo: no error, a remotely sensed noise and
bias error, and the BATS noise and bias error. Values for the remotely sensed noise and bias error are from Table 4.
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At SASP and SBSP, there are no snow pillows, so SWE values were computed using manual snowpits. This
method yields accurate values of total SWE, but measurements are limited to times when pits can be dug.
Because of the difficulty in reaching SBSP, that site has fewer pits than SASP; thus, we only used
the SASP site for the reconstructed SWE comparison. Note that both CUES and SASP have well‐measured
peak SWE values and snow disappearance dates, the two most important validation points for the
reconstruction method.

Figures 7a–7e show a time series of the measured and reconstructed SWE values for CUES, and Figure 8
shows the same for SASP. Table 5 summarizes the errors for both sites. The salient observations are (1)
the reconstructed SWE values without added noise and bias (i.e., measured albedo) agree well with the mea-
sured SWE at each site; (2) adding the remotely sensed noise and bias to the measured albedo actually
improves the accuracy of the reconstructed SWE; (3) adding the BATS noise and bias led to large overesti-
mates of peak SWE; and (4) although not shown here, the added bias had a much larger effect on the recon-
structed SWE than the added noise. We note that finding (2) suggests that our additive noise/bias serves as a
proxy for some other process in our reconstructed SWEmodel that is reducing SWE. Figures 7a and 7b show
this with the red curves (remotely sensed noise and bias) being slightly lower than the blue curves (no noise,
no bias). Wemight expect this because the SWE reconstruction technique will overestimate peak SWEwhen
there is accumulation during the ablation season. The reason is that the melt, which is summed in reverse to
estimate SWE, is constrained to be ≥0. Thus, while going backward from melt out to the peak, the method
cannot decrease SWE for any given point in time, which is effectively what happens just before a significant
snow storm during the melt season. Hence, reconstruction provides an upper envelope for SWE values when
snow accumulation occurs during the melt season.

Finding (3) illustrates the sensitivity of the reconstructed SWE to errors in albedo; albedo noise with a 9.6%
standard deviation and a −5.4% bias led to a 12–15% increase in peak SWE bias (5% to 20% for CUES and 6%
to 18% for SASP) compared to the no‐noise, no‐bias reconstruction case.

6. Conclusion

We improved a broadband albedo model by accounting for atmospheric conditions and incoming solar spec-
tra. Using results from this model shows the importance of choosing the correct atmospheric conditions.
This is especially important when using a statistical fit for the broadband albedo. Additionally, different
atmospheric models (SBDART and SMARTS) produce substantially different results, even when given
identical parameters.

We then applied this improved albedo model to in situ albedo measurements at three high‐altitude sites in
the western United States to validate remotely sensed retrievals from MODIS. To our knowledge, this is the
first comprehensive validation of remotely sensed albedos over such a long time period, 1,632 total days. We
would have liked to have used more sites in a broader range of snow climates, but we are not aware of any
other sites in the world where broadband snow albedo, near‐infrared snow albedo, and local terrain under
the radiometers have been measured for a comparable period of time.

We tested grain size and LAP content retrievals separately. This study also differs from previous studies
in that different levels of filtering, interpolation, and smoothing were validated. Examination of these

Table 5
Sensitivity of Reconstructed SWE at Two Sites to Errors in Albedo

Mean peak SWE (mm) MAE (mm) Bias (mm)

Site CUES SASP CUES SASP CUES SASP

Measured 1061 761 0 0 0 0
Reconstructed, no noise, no bias 1115 830 145 (13%) 74 (7%) 54 (5%) 69 (6%)
Reconstructed, remotely sensed noise and bias 1061 795 119 (11%) 51 (5%) 0 (0%) 34 (3%)
BATS noise and bias 1325 993 264 (20%) 232 (18%) 264 (20%) 232 (18%)

The values in parentheses are percentages of the measured mean peak SWE.
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techniques is relevant as they must be used to create continuous and accurate time series of MODIS
snow cover retrievals.

Our remotely sensed broadband albedo estimates compare favorably with the in situ estimates, with RMSE
values of 4–6% and negligible bias. Errors in the LAP content were relatively higher than those in grain size.
For comparison, the most accurate age‐based albedo, based on a previous study, showed a 10% RMSE and
−5% bias.

We examined the impact of these errors on reconstructed SWE at two of the sites. Using themeasured albedo
as a baseline, we added noise and bias to simulate the errors of the remotely sensed albedos and age‐based
albedos. As expected the bias error in albedo substantially impacted the reconstructed SWE. The baseline
showed a 7–13% MAE when compared with measured peak SWE. The accuracy of the reconstruction actu-
ally improved when simulated remotely sensed noise and bias were added, which had the effect of raising
the albedo. We suggest that this result highlights a shortcoming with reconstructed SWE, that it overesti-
mates peak SWE when there are snow accumulation events during the ablation season. In comparison,
the age‐based decay model showed large MAE and bias (18–20%) when used to reconstruct the measured
peak SWE.

We find that our remotely sensed albedos are superior to age‐based models in all aspects except simplicity.
Perhaps even more advantageous than the demonstrated improvements in accuracy, is the ability for remo-
tely sensed albedos to be used globally, in places with austere surface infrastructure such as much of High
Mountain Asia, as long as obscuration by clouds is not too frequent. We will focus future improvements
in areas that challenge optical sensors, such as under clouds and in forests.

Appendix: Lookup Table for Albedo

At the suggestion of A. W. Nolin, we have implemented a lookup table, in lieu of equations (10)–(16), to cal-
culate broadband albedo as a function of grain size (optically equivalent radius), solar zenith angle, local
solar illumination angle (to account for slopes) elevation, and concentration of a light‐absorbing particle,
in this case dust of size r = 3 μm from the Colorado Plateau, whose optical properties were estimated by
Skiles et al. (2017), or soot of size r = 0.5 μm, with optical properties from (Bond & Bergstrom, 2006). We
implement the lookup function in five dimensions using the MATLAB griddedInterpolant function with
Modified Akima cubic Hermite interpolation (Akima, 1970), introduced in MATLAB R2017b (Moler,
2019). The MATLAB function AlbedoLookup.m and the lookup table albedoLUT.mat are available at
10.5281/zenodo.3228428. Computing albedo values with equations (10)–(16) is about 15 times faster than
with the lookup table, but the lookup table provides more flexibility. It handles dust or soot concentrations,
accounts for variation in altitude that affects the spectral distribution of the incoming solar radiation, and
includes both solar zenith and local illumination angles and therefore accounts for variability that results
from path length through the atmosphere and forward scattering at the snow surface. The posted version
of the lookup table uses the SMARTS 2.9.5 midlatitude winter atmosphere, but the tables could be created
to compute values for other atmospheric profiles.

Data Availability

The in situ measurements at CUES have been published previously (Bair, Davis, et al., 2018). The in situ
measurements for SASP and SBSP are based off published data from an earlier study (Landry et al., 2014),
but the updated data sets used in this study are now available at https://dx.doi.org/10.5281/zenodo.2532589.
The ParBal energy balance model is available on GitHub: https://github.com/edwardbair/ParBal/releases/
tag/v1.0. The MATLAB version of the Wiscombe and Warren (1980) snow albedo model is available on
GitHub at https://github.com/edwardbair/SCAGD/tag/v1.0. A snow albedo lookup table function and data
from our model runs are available at 10.5281/zenodo.3228428. The filtered, interpolated, and smoothed
snow cover data for the Sierra are available at ftp://ftp.snow.ucsb.edu/pub/org/snow/products/MODIS/
SierraNevada/filtered_interpolated_smoothed and the Upper Colorado data are at ftp://ftp.snow.ucsb.
edu/pub/org/snow/products/MODIS/upperCO/filtered_interpolated_smoothed. The SMARTS model is
available from the National Renewable Energy Laboratory: https://www.nrel.gov/grid/solar‐resource/
smarts.html. The SBDART model is available at https://github.com/paulricchiazzi/SBDART.
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